- Details
Funding
DFG approves second funding period of the CRC 1316
Plasmas for the Systems for material conversion are an important component in the utilization and storage of decentrally generated renewable energies. The Collaborative Research Center 1316 (CRC 1316) "Transient Atmospheric Pressure Plasmas - from Plasma to Liquids to Solids" is dedicated to combining atmospheric pressure plasmas with catalysis to develop the most flexible solutions possible for this material conversion. "They should be scalable, controllable and robust against external influences, such as impurities in the starting materials," explains Prof. Dr. Achim von Keudell, spokesman of the CRC.
The first funding period of the CRC 1316 was dedicated to the elucidation of transient phenomena in atmospheric pressure plasmas as well as interfacial processes at the surface of catalysts. Here, the focus was on three systems: the plasma-catalytic conversion of gases, the combination of plasmas with electrolysis at the interface between liquid and solid, and plasma-assisted biocatalysis, in which enzymes very selectively produce new molecules. The researchers were able to make great progress in these areas: For example, they achieved precise control of the formation of reactive particles in these plasmas. They were also able to gain a deeper understanding of the atomic and molecular surface processes in these systems.
In the second funding period, these findings will be brought together to make the best possible use of the interplay between a plasma with its reactive particles and a catalytically active surface. There are many further questions in this regard, since in traditional catalysis, for example, stable molecules are essentially reaction partners, whereas in plasma catalysis, reactive particles or highly excited species can accelerate or suppress a specific reaction path. On this basis, the first prototype plants for plasma catalysis, plasma electrolysis and plasma biocatalysis are to be developed.
In addition to the RUB as the host university, researchers from the University of Ulm, the Jülich Research Center and the Fritz Haber Institute in Berlin are involved in the CRC.
- Details
Funded Workshop
Hereaus Seminar in "Non-thermal plasmas for sustainable chemistry" on April 23-27, 2023
The Herause Foundation just funded a workshop on Non-thermal plasmas for sustainable chemistry organized by Yiguang Ju (Princeton), Tomohiro Nozaki (Tokyo Inst. technol.), Annemie Bogaerts (univ. Antwerp), and Achim von Keudell (RUB) to be held in Bad Honnef in April 2023.
- Details
Teaching
Hands-on Writing course
On 11st June, 18 EP2 members, students, PhDs, and PostDocs, participated in an online hands-on writing workshop provided by A. von Keudell. During the day, we learned language and structure tips and tricks for clearly delivering our research results and messages. We applied what we have learned directly by writing our own texts and based on them discussed typical mistakes. All in all, it was a motivating and fruitful workshop day.
- Details
Teaching
Mikroplasma-Versuch Online
Der Praktikums-Versuch 401 "Mikroplasmen" wurde jetzt so weit überarbeitet, dass er weitgehend selbständig Online durchgeführt werden kann.
Der Versuch erlaubt die emissionspektroskopische Untersuchung eines Atmosphärendruck- Mikroplasmajets. Dabei wird per Frensteuerung sowohl die Entladung bedient und überwacht, als auch Spannung und Strom aufgenommen. Schrittmotoren erlauben eine Positionierung einer Lichtfaser im Bezug zum Entladungskanal. Die Spektren eines damit gekoppelten Spektrographs werden aufgenommen und können anschließend ausgewertet werden.
- Details
HOCHLEISTUNGSPLASMEN
Plasmastrukturen im Detail analysiert
Als auffiel, dass Plasmen inhomogen sind, gefiel das nicht jedem. Dabei bringt diese Eigenschaft Vorteile mit sich, zum Beispiel für die Industrie. Für das bloße Auge sind sie oft unsichtbar: die hauchdünnen Schichten, die mithilfe von Plasmen auf Oberflächen abgeschieden werden. Zum Beispiel auf Architekturglas, um das Reflexionsvermögen zu steuern, auf Werkzeuge, um sie vor Verschleiß zu schützen, oder auf Kunststoffe, um sie dichter gegen den Durchtritt von Gasen zu machen. Aus der Industrie sind Plasmen nicht mehr wegzudenken. Zwar kann man Oberflächen auch mithilfe von chemischen Prozessen beschichten, aber dafür sind teils so hohe Temperaturen erforderlich, dass die zu beschichtenden Objekte schmelzen würden. Plasmen hingegen bringen die erforderliche Energie nicht durch Wärme auf, sondern durch die darin enthaltenden reaktiven Teilchen.