- Details
Teaching
Mikroplasma-Versuch Online
Der Praktikums-Versuch 401 "Mikroplasmen" wurde jetzt so weit überarbeitet, dass er weitgehend selbständig Online durchgeführt werden kann.
Der Versuch erlaubt die emissionspektroskopische Untersuchung eines Atmosphärendruck- Mikroplasmajets. Dabei wird per Frensteuerung sowohl die Entladung bedient und überwacht, als auch Spannung und Strom aufgenommen. Schrittmotoren erlauben eine Positionierung einer Lichtfaser im Bezug zum Entladungskanal. Die Spektren eines damit gekoppelten Spektrographs werden aufgenommen und können anschließend ausgewertet werden.
- Details
HOCHLEISTUNGSPLASMEN
Plasmastrukturen im Detail analysiert
Als auffiel, dass Plasmen inhomogen sind, gefiel das nicht jedem. Dabei bringt diese Eigenschaft Vorteile mit sich, zum Beispiel für die Industrie. Für das bloße Auge sind sie oft unsichtbar: die hauchdünnen Schichten, die mithilfe von Plasmen auf Oberflächen abgeschieden werden. Zum Beispiel auf Architekturglas, um das Reflexionsvermögen zu steuern, auf Werkzeuge, um sie vor Verschleiß zu schützen, oder auf Kunststoffe, um sie dichter gegen den Durchtritt von Gasen zu machen. Aus der Industrie sind Plasmen nicht mehr wegzudenken. Zwar kann man Oberflächen auch mithilfe von chemischen Prozessen beschichten, aber dafür sind teils so hohe Temperaturen erforderlich, dass die zu beschichtenden Objekte schmelzen würden. Plasmen hingegen bringen die erforderliche Energie nicht durch Wärme auf, sondern durch die darin enthaltenden reaktiven Teilchen.
- Details
Research
Unraveling ns plasma physics of streamers in water
The spectra are dominated by the black body continuum from the hot tungsten surface and line emissions from the hydrogen Balmer series. Typical temperatures from 6000K up to 8000K are reached for the tungsten surface corresponding to the boiling temperature of tungsten at varying tungsten vapor pressures. The analysis of the ignition process and the concurrent spectral features indicate that the plasma is initiated by field ionization of water molecules at the electrode surface. At the end of the pulse, field emission of electrons can occur. During the plasma pulse, it is postulated that the plasma contracts locally at the electrode surface forming a hot spot. This causes a characteristic contribution to the continuum emission at small wavelengths. The spectra also show pronounced emission lines of the hydrogen Balmer series.
Nanosecond plasmas in liquids are an important method to trigger the water chemistry for electrolysis or for biomedical applications in plasma medicine. The understanding of these chemical processes relies on knowing the variation of the temperatures in these dynamic plasmas. This is analyzed by monitoring nanosecond pulsed plasmas that are generated by high voltages (HV) at 20 kV and pulse lengths of 15 ns applied to a tungsten tip with 50 micrometer diameter immersed in water. Plasma emission is analyzed by optical emission spectroscopy (OES) ranging from UV wavelengths of 250nm to visible wavelengths of 850nm at a high temporal resolution of 2 ns.
The data indicate two contributions of the hydrogen line radiation that differ with respect to the degree of self-absorption. It is postulated that one contribution originates from a recombination region showing strong self absorption and one contribution from a ionization region showing very little self-absorption. The emission lines from the ionization region are evaluated assuming Stark broadening, that yielded electron densities up to 5 x 10^25 m^-3. The electron density evolution follows the same trend as the temporal evolution of the voltage applied to the tungsten tip. The propagation mechanism of the plasma is similar to that of a positive streamer in the gas phase, although in the liquid phase field effects such as electron transport by tunneling should play an important role.
It is striking that the electron density follows closely the voltage applied to the electrode during the rising and falling edge of the pulse. In nanosecond plasmas in gases at atmospheric pressures, the voltage and current exhibit usually a delay in between with the voltage rising first followed by the current due to the delayed build-up of the electron density in the ionization avalanche. During the plasma propagation in the liquid, however, the density of species is three orders of magnitudes higher, so that the build-up of charges is expected to be much faster compared to the variation of the voltage. The same also holds for recombination that should exhibit time constants of the order of ps at these densities. The actual electron density is then a balance between generation of free electrons in the high electric fields and their loss due to recombination. This is consistent with the observation that the electron density follows also the decrease of the voltage with a time constant of 8 ns. The decay of the electron density is not a free decay due to recombination, but rather follows a decreasing equilibrium value as a competition between ionization and recombination.
- Details
RUBIN Serie "Was ist ein Körper für mich..."
Körper gibt es nicht
Verschiedene Disziplinen verstehen unterschiedliche Dinge unter dem Begriff „Körper“. Für die Physik stellt sich allerdings überhaupt nicht die Frage, was ein Körper ist.
Was ist ein Körper? Die Frage ist aus dem Blickwinkel der Physik falsch gestellt. Im Alltag nehmen wir die Körper in unserer Umgebung durch unsere Sinne wahr. Dabei findet eine Wechselwirkung von Teilchen mit diesem Körper statt, die uns Informationen über dessen räumliche Ausdehnung liefert: seien es die Lichtteilchen beim Sehen oder die Atome auf der Oberfläche unserer Hand beim Berühren. Die Art der Wechselwirkung bestimmt die Ausdehnung eines Körpers, die in der Atom- und Kernphysik in Streuexperimenten untersucht wird. Dabei beschießt man Atome oder Atomkerne mit bestimmten Teilchen und vermisst deren Ablenkung und Energieverlust. Als Projektile verwendet man Elektronen, Protonen, Neutronen oder Lichtteilchen – und je nach Art der Projektile und deren Energie unterscheiden sich die Ergebnisse deutlich. Mit Neutronen sieht man nur den Atomkern, mit Elektronen und Lichtteilchen eher die Atomhülle. Damit hat die Frage nach der Größe eines Atoms oder Atomkerns sehr viele Antworten. Diese Wechselwirkung hat auch im großen Maßstab Bedeutung. So ist die Größe eines Schwarzen Lochs eher durch die Grenze der Wechselwirkung von Licht mit der Gravitation definiert als durch die räumliche Ausdehnung des schweren Himmelskörpers in seinem Inneren.
Diese Arten der Wechselwirkung bestimmen unseren Umgang mit Körpern im täglichen Leben. So ist das Festhalten eines Buches mit Ihren Händen eigentlich die Wechselwirkung der Atome Ihrer Hand mit denen der Cellulose des Papiers, aus dem das Buch gemacht ist. Eines der wichtigsten Gesetze der Quantenphysik, das Pauli-Verbot, bestimmt, dass die Atome Ihrer Hände diejenigen des Papiers nicht so einfach durchdringen können. Deshalb liegt das Heft stabil in Ihren Händen und Sie können diesen Körper in seiner Größe wahrnehmen.
Foto: Damian Gorczany
- Details
Lehre
Online Lehre im Sommersemester 2021
Aufgrund der Coronakrise findet auch das Sommersemester 2021 als Online Semester statt. Dies stellt alle vor eine große Herausforderung, bietet aber auch die Chance sich mit digitalen Formen der synchronen oder asynchronen Lehre zu beschäftigen. Das Lehrteam von EP2 hat ein Konzept entwickelt bestehend aus Vorlesungsaufzeichnungen bzw. Vorlesungsstreaming, elektronischen Methoden zur Abgabe und Korrektur von Übungszetteln bis zu Videokonferenzlösungen für Sprechstunden und Übungsgruppen.
Der reguläre Beginn der Veranstaltungen ist der 12.4.2021. Details zu den Veranstaltungen finden sie in den Moodlekursen
- Plasma Interface Physics - von Keudell
Instruktionen zum Ablauf werden zusätzlich am 10.4.2020 kommuniziert. - Plasmadiagnostik (Bitte melden Sie sich vorher via eCampus an) - Schulz-von der Gathen
Weitere Informationen finden Sie auch unter 'Teaching'
Bei jeglichen Fragen kontaktieren sie bitte die Dozenten direkt.